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Continuum description of rarefied gas dynamics. Ill. The structures of shock waves
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We use the one-dimensional steady version of the equations derived in paper | to compute the structure of
shock waves and find good agreement with experiment.
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[. INTRODUCTION this article, we intend to show how the equations derived in
paper 1[12] may fill this need. To do this, we work out the

In the simplest description of a shock wave, one uses thstructure of shock waves in one-dimensional steady flow
Euler equations of fluid dynamics to develop jump condi-starting from the equations of paper I. Those equations were
tions across the discontinuity that describes the shock. Thesterived from kinetic theory without using some of the tradi-
conditions have qualitative value but there are problems fofonal simplifications associated with the Chapman—Enskog
which such limiting solutions are not adequate. For example@PProach. In particular, we did not use results from lower
in studying radiation from shock waves, say, to infer theOrder approximations to simplify higher order equations. In
properties of the radiating atoms, the conditions within theP@per [1[13], the first-order developmertin the mean free
shocks may become important. If the matter ahead of the@ath of paper | was tested against observations of ultrasound
shock is neutral and that behind the shock is fully ionized Propagation. .
the observed spectral lines may be formed within the shock [N the present article, we go on to see how well the theory
itself and so conditions there need to be carefully workedVorks for the computation of the structure of shock waves.
out. This example is one of many that we might have cited to>nce the shock thickness is typically of the order of a mean
motivate our present study of the structure of shock waved!®€ path, we are pushing against the formal limits of validity
Even a cursory look at the literature on this problem gives &f the expansions used in deriving fluid equations. We con-
clear picture of the importance that has been attached to itfront in addition the challenge of strong nonlinearity. Mo-

Much of the work on the structure of shock waves haserover the flow considered in shock theory is far from ther-
been aimed at improving the description provided by thgnodynamic equilibrium, so this too makes for a stringent

Navier-Stokes equations. A review of such attempts wadest. . )
given by Galkin and Shavaliefd], who compared various A simplification that makes comparisons relatively easy to

higher order solutions of the Boltzmann equation with resultglraw is that, in the study of shocks, we may separate the
from the Chapman-Enskd@] and Hilbert method$3]. In ~ continuum differential equations of fluid motion from the
terms of shock structure alone, the higher order solution§oundary conditions that must be stated to complete a well-
give a significantly improved resulé,5], but a number of Posed problem. The boundary conditions for the shock prob-
fundamental problems concerning the status of these equlgm are not at issue since we may impose the jump condi-
tions remain opeii1,3,6,7. It is especially troubling that a tions given above, reexpressed as Rankine-Hugoniot
large number of higher order nonlinear terms in some of théelatl_ons, to serve the role of the boundary conditions. Hence
proposed improvements make it difficult to use the results id" this study of shock structure, we are able to focus on
realistic problems. Similar difficulties beset extensions oféffects due only to the differential equations themselves and
Grad’s moment methofB,8], such as the extended irrevers- i doing so examine the validity of our version of the fluid
ible thermodynamic$EIT) [9], which does give good results €duations. . . . .

for the problem of ultrasonic sound wave propagation. It [N Sec.Il, we recall the fluid dynamical equations derived

remains true, however, that a large number of equations mu#? Paper I. In Sec. Ill, we rearrange the equations to facilitate

When the densities are sufficiently low, direct numericalStructures of one-dimensional shock waves computed with
simulation by the Monte Carlo method is the most reliableth€se equations are compared to analogous results obtained
way in which to compute high-Knudsen-number flows, al-With the Navier-Stokes equations as well as with experi-
though the computational cost may be high in regimes nedfents. We conclude with a brief summary in Sec. V.
continuum limits[10]. In the case of the relaxatiofor

BGKW) model, which is formally linear, the formal solution II. STATEMENT OF THE EQUATIONS
of that problem may be used and this approach has worked '
well in two-dimensional problemgl1]. Nevertheless, an ef- In paper | we proposed a modification of the usual

fective macroscopic description would be of value for prob-asymptotic techniques for deriving fluid equations from ki-
lems in which the Knudsen number is not infinitesimal. Innetic theory. Our procedure avoids the simplification intro-
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duced by Chapman and Enskf®] in which the results of shock layer
lower approximations are introduced into the higher approxi-

|
mations. When we proceed in this way, we obtain these fluid 0
equationd12-13; upstream :> . :> downstream
_ ©,.v,T) Py L)
dp+V-(pu)=0, (2.1 Prsvs 4 T 2%
1
du+u-Vu+ ;V-PZO, (2.2 - =X

FIG. 1. Schematic diagram of a shock wave.

2
HT+u-VT+ ﬁ(PZVU'ﬁ‘V -Q)=0, (2.3 upstream thermodynamic quantities and the dissipation
P mechanism. The form of the shock wave provides a straight-

wherep is the mass density is the average velocity of the forward test O.f the equaﬂons. .

particles in a fluid element cell, andis the temperature. We -t subscripts 1 and 2 in Fig. 1 denote values at large
assume that the gas is made up of identical, structureledliStances upstreanx{—c) and downstreamx(—x) of
particles with massn so thatR=k/m is the gas constant the shock front, withu=[v(x),0,0] andp andT be functions

with k the Boltzmann constant. Our expression for the stres@Y Of x. In the frame comoving with the shock front, we
tensor is ave d;=0. Upon integrating Eq(2.1) to Eq. (2.3 from a

uniform upstream state to an arbitrary positignin the

DInT 2 shock, we obtain
P= pRT—,u( Dt +§V~u) I—uE:VVuU, (2.9
pU=p1U1, (3.1
where
p+Pl)2+7TXX:p1+P1Ui, (3.2
D
ﬁ:aﬁ—u'v‘ (25 pv(c,T+302)+pv+v Tyt Ge=p101(C, T1+ 505) +p1vy,
(3.3
and

wherec, = 3R, m,is thexx component of the viscous stress

u=T1pRT (2.6)  tensor given by Eq(2.4) andqy is thex component of the
heat current given by E@2.8). The simple forms of the right
is the viscosity expressed in terms of the mean free time sides of these equations result from vanishing of the deriva-
For the shear stress tensor we have the usual expression, tives of the fluid variables far from the shock.
From Eq.(3.1), we can expresp in terms ofv:
I |
El=—+ ——-2V.ud'. 2.7 p1U1

== (3.4

Finally, for the heat current, we have
Combining Eqgs(3.4) with (3.2 and(3.3) leads to
7 5 Du
Q=—7VIn(pT ¥2)— SV InT-—suge. (29
t +pv1(vi—v), (3.9

Txx— Rplvl(__ -
(2] v

where =3 uRT for the relaxation model.
By contrast, in the Navier-Stokes equations with no bulk  q,=3Rp,v(T;—T)+p1(vi—v)+ 3pw1(v1—v)2

viscosity, one has (3.6)
P=pRTl—uE:VVu (2.9 We nondimensionlize these equations usings the unit of
speed,T; as unit of temperature, and the mean free path at
and upstream infinityx ; as the unit of length. Then, we introduce
the nondimensional quantitieX=x/\,;, w(X)=v/vq,
Q=-7VInT. (210  g(X)=T/T, and
T
Ill. SHOCK THEORY w(X)= Ixx (3.79
A. Basic equations P1
As indicated in Fig. 1, when the velocity of the flow in the and
upstream x— — ) exceeds the sound speed of the medium,
a shock front forms. In a frame comoving with the front, a X) = Ax 3.7b
. . a(x) : (3.7b
steady shock layer forms. Its structure is determined by the P1v1
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The equations become 4\/§ 0 5 ,
—=\/= '=1-—+ = - .
) 3 VgMisw =1-_+3Mi(1-w), (315
w=1-—+=-M3(1-w), (3.9
w 3
S\F S po1-9+2(1 )+5M2 1-w)?
—=\/z50'=1-0+5(1-w)+ = —wW)<.
2q 2 5 , 2 VoM, 3! g Ml
?21—04‘ 5(1—W)+§M1(1—W) , (39) (3.16
where B. Critical Mach number
v Before carrying out numerical integration of Eq8.13
1 . . .
M,=—, with  ¢;=+VyRT, and(3.14), we examine them in order to draw some general
Cq . ) . o
conclusions. First, we observe that, since:tiaerivatives of
andy=5/3. w and @ vanish far upstream and downstream, the right sides

We see from Eq(2.6) that the viscosity ise=p, where ~ Of EGs.(3.13 and(3.14 [as well as those of Eqe3.15 and

7 is the mean flight time of the particles. Here, we adopt the(3-16] must vanish there. These conditions provide two si-
simplest form of the relaxation model, namely, that with con-Multaneous equations which are readily solved for the fixed

stantr. Then, we follow Gilbarg and Paolucfl6] and take ~ Points Wy,6;)=(1,1) and
AD M2+3 5M7+14M2-3
1M1 =
s, (3.10 (W2, 02)=| M2z 16m2

*2RT,

wheres is a parameter that is adjusted according to the na- .Our aim is 1o find solut|ons' that cgnnect the two fixed
ture of the constituent particles. For argers; 0.816 has of- points. However, although the fixed points may occur only at

ten been used2], but Kestinet al. [17] suggested thas the locations in thew, ) plane just found, those locations

=0.64 is a better value for argon. We shall adopt the Iatterneed hot be fixed points: the left sides of E(S.13 and

more recent value in these computations. As to the condué—3'14). may vanish wh_en t_he deter_mmant Of the matrix of the
. . : s coefficients of the derivatives vanishes. This is seen when we
tivity, the relaxation model gives;=3uRT but, when the

Boltzmann collision term is used, we obtain a slightly differ- write the equations in the form

ent value that is in better agreement with experiment. Be- W’ 1 [6/w/M,
cause the difference results from the atomic model rather ( ,)___\/:< ) (3.17
than fluid-dynamical issues, we shall adopt the formgla 0 s V5| Myq
=15uRT/4 to remove the effects of the inaccuracy of the
atomic model. where
To these formulas we adjoin the the closure relati@) 2 W/ o
and(2.8), that may be rewritten in nondimensional form as :< ) (3.18
Ew—0lw 2

If we can solve Eqgs(3.17) and(3.18 to obtain explicit
3 /5s !
9="2Vewm, 9 : : ; . -qu 0
1 lutions connecting the fixed points. This is possible if the

5 0’
w=— \[EM 18( 2w +W7) (3.11 with £€=10M %/9_
0 W expressions for the derivatives, we can then solve the
20+ —Mfww’ - BW), (3.12 coupled first-order ordinary differential equations to find so-
where the primes indicate differentiation with respeckto ~ determinant of\ does not vanish. The critical condition is
Upon combining Egs(3.1) and (3.12 with Egs.(3.8)  then obtained by setting the determinant to zero, a step that

and(3.9), we obtain the following: leads to the relation
! 2
—\/§M13<2W’+W%)=1—\%+§Mi(1—w), 0=§Miwz. (3.19
(3.13 o .
At upstream infinity, we havew, #) =(1,1) and this leads to
3 \F s 0, w’ the critical valueM $=3/\2~2.12. We cannot solve for the
“2V6M; 20"+ g Miww' =4~ derivatives wherM ;>M§ .

When the upstream flow speed is large enough to make
the Mach number exceed the critical Mach numbgf, D
changes its sign. If this leads to eithief,/D>0 or D,/D
<0 far upstream, it becomes impossible to match the down-
For comparison, we also write the equations that determinstream values with a monotonic solution. This happens for
the shock structure from the Navier-Stokes equations: any hyperbolic system, as is commonly seen in moment for-

2 5 ,
=1-6+ §(1—w)+ §M1(1—W)2. (3.19
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malisms[9] and was first noticed in the study of Grad's 1.0
13-moment method. Interestingly, it is numerically verified n
[9,18] that only when the largest upstream critical Mach 08- M-155
number is surpassed does this happen. 2 ]

In moment methods, as more and more moments are in- g 0.6
cluded, the largest critical Mach number increases, and this > This work
relaxes the constraints on the application to shock study with 2 0.4+
the moment method. It will be of interest to see whether a . Experiment
higher order terms in our approach will produce a similar 024 4|
amelioration. Still, it is worth noting that the constraints on . ; NS
the Mach number are not due to the expansion scheme, but 00— F 1T 1T
to the nature of the relaxational model. In a subsequent pa- -10 0 10
per, we shall show that, when a classical Boltzmann integral X

is used in place of the relaxation term, the constraints on the
Mach number are removed. However, physically, informa-

tion speed cannot be infinite, which indicates that the final

version of hydrodynamics must be of a hyperbolic nature.

FIG. 2. Comparison of the density profile with Mach number
=1.55.

156

— +-wo' .
4yM1

2
4.9

o 0

2AQ 2 |y w 0 5
dQ=-——=—2\/=sM;
IV. SHOCK STRUCTURE 3pyv; 3 V2

To find the structures of shock waves in the continuum
limit, we integrated Eq9.3.13 and(3.14) for different Mach
numbers in the range allowed. Here in Sec. IV, we compardleither of these is included in the usual derivations of the
the results with those obtained with the conventionalNS equations. This neglect is not advisable when the Knud-
Navier—Stokes equations and also with experimental data. Teen number is not small as we confirm with the following
facilitate such comparisons, we note that the differences beesults.
tween our stress tensor and heat flux and those in the con- Figure 2 shows a comparison of the theoretical density
ventional fluid dynamical equations reside in the quantities,profiles (for M, =1.55) with the experimental measurement

given by Alsmeyef19]. We have computed and included in
AP=—u(DyInT+2V-u)l, (4.2) Fig. 2 profiles for the NS equations as well as our own. We

see that the present theory agrees better with experiment. We
5 D make a similar comparison for temperature in Fig. 3, but this
u . X .

AQ=—| 7V In(pT)+ zp—]|. (4.2) time make the comparison with results of a Monte Carlo

27 Dt simulation resul{19] in place of the experiment. Again the
fit of our theory is quite good whereas that for the Navier—

These are extra terms in our version for the stress tensor argtokes equations is less so.

heat flux compared to in the usual Navier-Stoke$) form. Next we examine some properties that are often used by
In one-dimensional flow withx as the unit vector in th&  experimentalists to characterize shock waves. The most re-
direction, we may write these as vealing of these is the inverse thickness,
AP=APXX, (4.3 Pr
o i=—"T (4.9
R pP2—pP1
AQ=AQX, (4.4
) . 1.0
with AP andAQ given by ]
o 0.8—— M=1.55
DInT 2 | ° .
AP=—pu Dt +§v , (4.5 30'6_
3 -
§ ] This work
5 Do g 0.4
AQ=—| n[In(pT)]" + > Dt/ (4.6) g ] Monte Carlo
F 0.2 o
] N-S
We may use the upstream quantities to write these formulas 0.0 + T T T T
in nondimensional form as 8 6 4 2 0 2 4 6 8 10
X
AP Y 0" 2 FIG. 3. Comparison of the temperature profile with Mach num-
dP=—=—\/53sM;| —+ s 0’|, (4.7 DY P P P
P1 2 6 3 berM=1.55.
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FIG. 4. Inverse thickness.
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Figure 4 shows the inverse thickness versus the Mach
number. Experimental data for argon and xenon are also
shown. While the fit from our equations is good, the results
also show a known failing of the NS equations, namely, they
predict shock structures that are narrower than those seen
experimentally. This difference is corrected by the extra
terms in our equations. That is, improved theoretical profiles
result from the inclusion of the nonzedP anddQ, as we
see from the plots in Figs. 5 and 6 that show the scaled
density, temperature, and velocity, together vdfh anddQ
for Mach numberd/;=1.5 and 2.0, respectively. The analo-
gous results from the Navier-Stokes equations were com-
puted and plotted for comparison.

Our estimates of the local dissipation show that the net
effect on the shock structure causedd® anddQ increases
monotonically from the downstream to the upstream, which

Wherepr’n is the maximum value of the gradient of density tends to lower the grgdients of the thermodynamical vari-
profile, and, as before, andp, are the upstream and down- ables and results in wider shocks. Such effects become more

stream densities, respectively. Next, we have the asymmetijoticeable when Mach number is larger, as is seen in Figs. 5
parametef5],

P2
pdx
Pa

Pa
pdx
P1

As=

(4.10

and 6. We can see that, with a increase of the Mach number,
the additional terms from our modified procedure become
more and more significant and that their effects are no longer
negligible at a moderate Mach number. They produce extra
dissipation, which makes the gradients of the thermodynamic
variables smoother in doing and so widen the shock.
As for the asymmetry parameter, in the casdvf=2.0,
the NS equations givé,=1.25, while our modification of

with p,=3(p,— p1). Finally, the temperature—density sepa-them givesA,=0.83, which is closer to the experimental
ration A ;r is defined as the distance between the mediunvalue of 0.93. Aside from the quantitative improvement, the
value points of temperature and density.
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modified version also becomes qualitatively consistent with

0.02 E
0.00 2
3 This work
-0.02
3 N-S
-0.04 . LI L LN L |
-10 0 10
X
0.03
0.00—: FIG. 5. Density, temperature, velocity, and
. dP anddQ profiles with Mach numbeM =1.5.
-0.03 e
-10 0 10
X

036304-5



XINZHONG CHEN, EDWARD A. SPIEGEL, AND HONGLING RAO PHYSICAL REVIEW BB5 036304

1.0 5
0.8
0.6
0.4
023

004  —f— =
-0.1
0.2
N-S 0.3

dP

This work This work

Density

N-S

0.0 +r T T -0.4 T
6-4-2 02 46 810 6 -4-2 02 468
X X

1.0 7 —

0.8
0.6

0.4 _: This work

T
8 10

This work

o
(%)

dQ

FIG. 6. Density, temperature, velocity, and
dP anddQ profiles with Mach numbeM =2.0.

o
o

0.2 / N-8

Temperature

o
(%)

1.0 4
0.8
0.6
0.4 .
0.2 2\
0.0 Frrrrrr

642 0

This work

N-S

Velocity

INMMUUMUL
2 4 6 8 10
X

the experiment, that ig)s should be smaller than unity. For ~ The structures calculated here are steady. However, in the
Mach number M;=2.0, the NS equations lead to a study of rapid variations produced by high-frequency sound
temperature—density separation of 1.04, whereas the modyave propagation in Ref13], the modified fluid equations

fied version leads to one of 1.67 and the experimental datproduced results that were in good agreement with experi-

for argon is one of 1.505]. ment for the speed of propagation of the waves uniformly for
all Knudsen numbers.
V. CONCLUSION In our derivations, we did not follow Chapman and En-

We have seen that modification of the Hilbert expansiorFkOg in requiri.ng. that the gre}dient terms be sm_all. The regults
described in paper [[12] leads to a good representation of reveal that this is an effecnye method that gives equations
shock structures found experimentally for Mach numbers becapable of describing equations that are valid for processes
tween 1.0 and 2.12. The results are distinctly better thaf@r from equilibrium. In a later paper we shall apply them to
those obtained from the Navier—Stokes equations derivethe derivation of fluid equations from the Boltzmann equa-
with the standard Chapman—Enskog procedure. The agre#ion. In this way we obtain very similar continuum equations
ment with numerical results from the kinetic theory obtainedbut avoid the problem of the existence of a critical Mach
by Monte Carlo simulation is also good. number(see Sec. Il B.
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