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Continuum description of rarefied gas dynamics. III. The structures of shock waves
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We use the one-dimensional steady version of the equations derived in paper I to compute the structure of
shock waves and find good agreement with experiment.
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I. INTRODUCTION

In the simplest description of a shock wave, one uses
Euler equations of fluid dynamics to develop jump con
tions across the discontinuity that describes the shock. Th
conditions have qualitative value but there are problems
which such limiting solutions are not adequate. For exam
in studying radiation from shock waves, say, to infer t
properties of the radiating atoms, the conditions within
shocks may become important. If the matter ahead of
shock is neutral and that behind the shock is fully ioniz
the observed spectral lines may be formed within the sh
itself and so conditions there need to be carefully work
out. This example is one of many that we might have cited
motivate our present study of the structure of shock wav
Even a cursory look at the literature on this problem give
clear picture of the importance that has been attached to

Much of the work on the structure of shock waves h
been aimed at improving the description provided by
Navier-Stokes equations. A review of such attempts w
given by Galkin and Shavaliev@1#, who compared various
higher order solutions of the Boltzmann equation with resu
from the Chapman-Enskog@2# and Hilbert methods@3#. In
terms of shock structure alone, the higher order soluti
give a significantly improved result@4,5#, but a number of
fundamental problems concerning the status of these e
tions remain open@1,3,6,7#. It is especially troubling that a
large number of higher order nonlinear terms in some of
proposed improvements make it difficult to use the result
realistic problems. Similar difficulties beset extensions
Grad’s moment method@3,8#, such as the extended irrever
ible thermodynamics~EIT! @9#, which does give good result
for the problem of ultrasonic sound wave propagation.
remains true, however, that a large number of equations m
be solved to achieve reasonable accuracy with EIT.

When the densities are sufficiently low, direct numeric
simulation by the Monte Carlo method is the most relia
way in which to compute high-Knudsen-number flows,
though the computational cost may be high in regimes n
continuum limits @10#. In the case of the relaxation~or
BGKW! model, which is formally linear, the formal solutio
of that problem may be used and this approach has wo
well in two-dimensional problems@11#. Nevertheless, an ef
fective macroscopic description would be of value for pro
lems in which the Knudsen number is not infinitesimal.
1063-651X/2002/65~3!/036304~7!/$20.00 65 0363
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this article, we intend to show how the equations derived
paper I@12# may fill this need. To do this, we work out th
structure of shock waves in one-dimensional steady fl
starting from the equations of paper I. Those equations w
derived from kinetic theory without using some of the trad
tional simplifications associated with the Chapman–Ens
approach. In particular, we did not use results from low
order approximations to simplify higher order equations.
paper II @13#, the first-order development~in the mean free
path! of paper I was tested against observations of ultraso
propagation.

In the present article, we go on to see how well the the
works for the computation of the structure of shock wav
Since the shock thickness is typically of the order of a me
free path, we are pushing against the formal limits of valid
of the expansions used in deriving fluid equations. We c
front in addition the challenge of strong nonlinearity. M
erover the flow considered in shock theory is far from th
modynamic equilibrium, so this too makes for a stringe
test.

A simplification that makes comparisons relatively easy
draw is that, in the study of shocks, we may separate
continuum differential equations of fluid motion from th
boundary conditions that must be stated to complete a w
posed problem. The boundary conditions for the shock pr
lem are not at issue since we may impose the jump co
tions given above, reexpressed as Rankine-Hugo
relations, to serve the role of the boundary conditions. He
in this study of shock structure, we are able to focus
effects due only to the differential equations themselves
in doing so examine the validity of our version of the flu
equations.

In Sec. II, we recall the fluid dynamical equations deriv
in paper I. In Sec. III, we rearrange the equations to facilit
the calculation of the shock structure. Then, in Sec. IV,
structures of one-dimensional shock waves computed w
these equations are compared to analogous results obta
with the Navier-Stokes equations as well as with expe
ments. We conclude with a brief summary in Sec. V.

II. STATEMENT OF THE EQUATIONS

In paper I we proposed a modification of the usu
asymptotic techniques for deriving fluid equations from
netic theory. Our procedure avoids the simplification intr
©2002 The American Physical Society04-1
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duced by Chapman and Enskog@2# in which the results of
lower approximations are introduced into the higher appro
mations. When we proceed in this way, we obtain these fl
equations@12–15#:

] tr1“•~ru!50, ~2.1!

] tu1u•¹u1
1

r
“•P50, ~2.2!

] tT1u•“T1
2

3rR
~P:“u1“•Q!50, ~2.3!

wherer is the mass density,u is the average velocity of the
particles in a fluid element cell, andT is the temperature. We
assume that the gas is made up of identical, structure
particles with massm so thatR5k/m is the gas constan
with k the Boltzmann constant. Our expression for the str
tensor is

P5FrRT2mS D ln T

Dt
1

2

3
“•uD G I2mE:““u, ~2.4!

where

D

Dt
5] t1u•“, ~2.5!

and

m5trRT ~2.6!

is the viscosity expressed in terms of the mean free timet.
For the shear stress tensor we have the usual expressio

Ei j 5
]ui

]xj
1

]uj

]xi
2

2

3
“•ud i j . ~2.7!

Finally, for the heat current, we have

Q52h¹ ln~rT2(3/2)!2
7

2
h“ ln T2

5

2
m

Du

Dt
, ~2.8!

whereh5 5
2 mRT for the relaxation model.

By contrast, in the Navier-Stokes equations with no b
viscosity, one has

P5rRTI2mE:““u ~2.9!

and

Q52h“ ln T. ~2.10!

III. SHOCK THEORY

A. Basic equations

As indicated in Fig. 1, when the velocity of the flow in th
upstream (x→2`) exceeds the sound speed of the mediu
a shock front forms. In a frame comoving with the front,
steady shock layer forms. Its structure is determined by
03630
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upstream thermodynamic quantities and the dissipa
mechanism. The form of the shock wave provides a straig
forward test of the equations.

Let subscripts 1 and 2 in Fig. 1 denote values at la
distances upstream (x→2`) and downstream (x→`) of
the shock front, withu5@v(x),0,0# andr andT be functions
only of x. In the frame comoving with the shock front, w
have] t50. Upon integrating Eq.~2.1! to Eq. ~2.3! from a
uniform upstream state to an arbitrary positionx in the
shock, we obtain

rv5r1v1 , ~3.1!

p1rv21pxx5p11r1v1
2 , ~3.2!

rv~cvT1 1
2 v2!1pv1vpxx1qx5r1v1~cvT11 1

2 v1
2!1p1v1 ,

~3.3!

wherecv5 3
2 R, pxx is thex̂x̂ component of the viscous stres

tensor given by Eq.~2.4! andqx is the x̂ component of the
heat current given by Eq.~2.8!. The simple forms of the right
sides of these equations result from vanishing of the der
tives of the fluid variables far from the shock.

From Eq.~3.1!, we can expressr in terms ofv:

r5
r1v1

v
. ~3.4!

Combining Eqs.~3.4! with ~3.2! and ~3.3! leads to

pxx5Rr1v1S T1

v1
2

T

v D1r1v1~v12v !, ~3.5!

qx5 3
2 Rr1v1~T12T!1p1~v12v !1 1

2 r1v1~v12v !2.
~3.6!

We nondimensionlize these equations usingv1 as the unit of
speed,T1 as unit of temperature, and the mean free path
upstream infinityl1 as the unit of length. Then, we introduc
the nondimensional quantitiesX5x/l1 , w(X)5v/v1 ,
u(X)5T/T1 and

Ã~X!5
pxx

p1
~3.7a!

and

q~X!5
qx

p1v1
. ~3.7b!

FIG. 1. Schematic diagram of a shock wave.
4-2
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CONTINUUM DESCRIPTION OF . . . .III. . . . PHYSICAL REVIEW E 65 036304
The equations become

Ã512
u

w
1

5

3
M1

2~12w!, ~3.8!

2q

3
512u1

2

3
~12w!1

5

9
M1

2~12w!2, ~3.9!

where

M15
v1

c1
, with c15AgRT1

andg55/3.
We see from Eq.~2.6! that the viscosity ism5tp, where

t is the mean flight time of the particles. Here, we adopt
simplest form of the relaxation model, namely, that with co
stantt. Then, we follow Gilbarg and Paolucci@16# and take

m5
l1p1

A2RT1

s, ~3.10!

wheres is a parameter that is adjusted according to the
ture of the constituent particles. For argon,s50.816 has of-
ten been used@2#, but Kestin et al. @17# suggested thats
50.64 is a better value for argon. We shall adopt the lat
more recent value in these computations. As to the cond
tivity, the relaxation model givesh5 5

2 mRT but, when the
Boltzmann collision term is used, we obtain a slightly diffe
ent value that is in better agreement with experiment.
cause the difference results from the atomic model ra
than fluid-dynamical issues, we shall adopt the formulah
515mRT/4 to remove the effects of the inaccuracy of t
atomic model.

To these formulas we adjoin the the closure relations~2.4!
and ~2.8!, that may be rewritten in nondimensional form a

Ã52A5

6
M1sS 2w81w

u8

u D ~3.11!

q52
3

2
A5

6

s

M1
S 2u81

10

9
M1

2ww82u
w8

w D , ~3.12!

where the primes indicate differentiation with respect toX.
Upon combining Eqs.~3.11! and ~3.12! with Eqs. ~3.8!

and ~3.9!, we obtain the following:

2A5

6
M1sS 2w81w

u8

u D512
u

w
1

5

3
M1

2~12w!,

~3.13!

2
3

2
A5

6

s

M1
S 2u81

10

9
M1

2ww82u
w8

w D
512u1

2

3
~12w!1

5

9
M1

2~12w!2. ~3.14!

For comparison, we also write the equations that determ
the shock structure from the Navier-Stokes equations:
03630
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4

3
A5

6
M1sw8512

u

w
1

5

3
M1

2~12w!, ~3.15!

2
3

2
A5

6

s

M1
u8512u1

2

3
~12w!1

5

9
M1

2~12w!2.

~3.16!

B. Critical Mach number

Before carrying out numerical integration of Eqs.~3.13!
and~3.14!, we examine them in order to draw some gene
conclusions. First, we observe that, since thex derivatives of
w andu vanish far upstream and downstream, the right si
of Eqs.~3.13! and~3.14! @as well as those of Eqs.~3.15! and
~3.16!# must vanish there. These conditions provide two
multaneous equations which are readily solved for the fix
points (w1 ,u1)5(1,1) and

~w2 ,u2!5S M1
213

4M1
2 ,

5M1
4114M1

223

16M1
2 D .

Our aim is to find solutions that connect the two fixe
points. However, although the fixed points may occur only
the locations in the (w,u) plane just found, those location
need not be fixed points: the left sides of Eqs.~3.13! and
~3.14! may vanish when the determinant of the matrix of t
coefficients of the derivatives vanishes. This is seen when
write the equations in the form

MS w8

u8
D 52

1

s
A6

5S Ã/M1

M1q D , ~3.17!

where

M5S 2 w/u

jw2u/w 2 D , ~3.18!

with j510M1
2/9.

If we can solve Eqs.~3.17! and ~3.18! to obtain explicit
expressions for the derivatives, we can then solve
coupled first-order ordinary differential equations to find s
lutions connecting the fixed points. This is possible if t
determinant ofM does not vanish. The critical condition i
then obtained by setting the determinant to zero, a step
leads to the relation

u5
2

9
M1

2w2. ~3.19!

At upstream infinity, we have (w,u)5(1,1) and this leads to
the critical valueM1

c53/A2'2.12. We cannot solve for the
derivatives whenM1.M1

c .
When the upstream flow speed is large enough to m

the Mach number exceed the critical Mach numberM1
c , D

changes its sign. If this leads to eitherDv /D.0 or Du /D
,0 far upstream, it becomes impossible to match the do
stream values with a monotonic solution. This happens
any hyperbolic system, as is commonly seen in moment
4-3
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malisms @9# and was first noticed in the study of Grad
13-moment method. Interestingly, it is numerically verifi
@9,18# that only when the largest upstream critical Ma
number is surpassed does this happen.

In moment methods, as more and more moments are
cluded, the largest critical Mach number increases, and
relaxes the constraints on the application to shock study w
the moment method. It will be of interest to see wheth
higher order terms in our approach will produce a simi
amelioration. Still, it is worth noting that the constraints
the Mach number are not due to the expansion scheme
to the nature of the relaxational model. In a subsequent
per, we shall show that, when a classical Boltzmann inte
is used in place of the relaxation term, the constraints on
Mach number are removed. However, physically, inform
tion speed cannot be infinite, which indicates that the fi
version of hydrodynamics must be of a hyperbolic nature

IV. SHOCK STRUCTURE

To find the structures of shock waves in the continu
limit, we integrated Eqs.~3.13! and~3.14! for different Mach
numbers in the range allowed. Here in Sec. IV, we comp
the results with those obtained with the conventio
Navier–Stokes equations and also with experimental data
facilitate such comparisons, we note that the differences
tween our stress tensor and heat flux and those in the
ventional fluid dynamical equations reside in the quantiti

DP52m~D0 ln T1 2
3“•u!I, ~4.1!

DQ52S h“ ln~rT!1
5

2
m

Du

Dt D . ~4.2!

These are extra terms in our version for the stress tensor
heat flux compared to in the usual Navier-Stokes~NS! form.
In one-dimensional flow withx̂ as the unit vector in thex
direction, we may write these as

DP5DPx̂x̂, ~4.3!

DQ5DQx̂, ~4.4!

with DP andDQ given by

DP52mS D ln T

Dt
1

2

3
v8D , ~4.5!

DQ52S h@ ln~rT!#81
5

2

Dv
Dt D . ~4.6!

We may use the upstream quantities to write these form
in nondimensional form as

dP[
DP

p1
52Ag

2
sM1S u8

u
1

2

3
v8D , ~4.7!
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dQ[
2DQ

3p1v1
52

2

3
Ag

2
sM1F 15u

4gM1
2 S v

v8
2

u8

u D 1
5

2
vv8G .

~4.8!

Neither of these is included in the usual derivations of
NS equations. This neglect is not advisable when the Kn
sen number is not small as we confirm with the followin
results.

Figure 2 shows a comparison of the theoretical den
profiles ~for M151.55) with the experimental measureme
given by Alsmeyer@19#. We have computed and included
Fig. 2 profiles for the NS equations as well as our own. W
see that the present theory agrees better with experiment
make a similar comparison for temperature in Fig. 3, but t
time make the comparison with results of a Monte Ca
simulation result@19# in place of the experiment. Again th
fit of our theory is quite good whereas that for the Navie
Stokes equations is less so.

Next we examine some properties that are often used
experimentalists to characterize shock waves. The mos
vealing of these is the inverse thickness,

d215
rm8

r22r1
, ~4.9!

FIG. 2. Comparison of the density profile with Mach numb
M51.55.

FIG. 3. Comparison of the temperature profile with Mach nu
ber M51.55.
4-4
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whererm8 is the maximum value of the gradient of dens
profile, and, as before,r1 andr2 are the upstream and down
stream densities, respectively. Next, we have the asymm
parameter@5#,

As5

E
ra

r2
rdx

E
r1

ra
rdx

, ~4.10!

with ra5 1
2 (r22r1). Finally, the temperature–density sep

ration DrT is defined as the distance between the med
value points of temperature and density.

FIG. 4. Inverse thickness.
03630
try

Figure 4 shows the inverse thickness versus the M
number. Experimental data for argon and xenon are a
shown. While the fit from our equations is good, the resu
also show a known failing of the NS equations, namely, th
predict shock structures that are narrower than those s
experimentally. This difference is corrected by the ex
terms in our equations. That is, improved theoretical profi
result from the inclusion of the nonzerodP anddQ, as we
see from the plots in Figs. 5 and 6 that show the sca
density, temperature, and velocity, together withdP anddQ
for Mach numbersM151.5 and 2.0, respectively. The anal
gous results from the Navier-Stokes equations were c
puted and plotted for comparison.

Our estimates of the local dissipation show that the
effect on the shock structure caused bydP anddQ increases
monotonically from the downstream to the upstream, wh
tends to lower the gradients of the thermodynamical va
ables and results in wider shocks. Such effects become m
noticeable when Mach number is larger, as is seen in Fig
and 6. We can see that, with a increase of the Mach num
the additional terms from our modified procedure beco
more and more significant and that their effects are no lon
negligible at a moderate Mach number. They produce e
dissipation, which makes the gradients of the thermodyna
variables smoother in doing and so widen the shock.

As for the asymmetry parameter, in the case ofM152.0,
the NS equations giveAs51.25, while our modification of
them givesAs50.83, which is closer to the experiment
value of 0.93. Aside from the quantitative improvement, t
modified version also becomes qualitatively consistent w
d
FIG. 5. Density, temperature, velocity, an
dP anddQ profiles with Mach numberM51.5.
4-5
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FIG. 6. Density, temperature, velocity, an
dP anddQ profiles with Mach numberM52.0.
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the experiment, that is,As should be smaller than unity. Fo
Mach number M152.0, the NS equations lead to
temperature–density separation of 1.04, whereas the m
fied version leads to one of 1.67 and the experimental d
for argon is one of 1.50@5#.

V. CONCLUSION

We have seen that modification of the Hilbert expans
described in paper I@12# leads to a good representation
shock structures found experimentally for Mach numbers
tween 1.0 and 2.12. The results are distinctly better t
those obtained from the Navier–Stokes equations der
with the standard Chapman–Enskog procedure. The ag
ment with numerical results from the kinetic theory obtain
by Monte Carlo simulation is also good.
f
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r,
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The structures calculated here are steady. However, in
study of rapid variations produced by high-frequency sou
wave propagation in Ref.@13#, the modified fluid equations
produced results that were in good agreement with exp
ment for the speed of propagation of the waves uniformly
all Knudsen numbers.

In our derivations, we did not follow Chapman and E
skog in requiring that the gradient terms be small. The res
reveal that this is an effective method that gives equati
capable of describing equations that are valid for proces
far from equilibrium. In a later paper we shall apply them
the derivation of fluid equations from the Boltzmann equ
tion. In this way we obtain very similar continuum equatio
but avoid the problem of the existence of a critical Ma
number~see Sec. III B!.
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